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Process of irreversible nucleation in multilayer growth. II. Exact results in one and two dimensions
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We study irreversible dimer nucleation on top of terraces during epitaxial growth in one and two dimensions,
for all values of the step-edge barrier. The problem is solved exactly by transforming it into a first passage
problem for a random walker in a higher-dimensional space. The spatial distribution of nucleation events is
shown to differ markedly from the mean-field estimate except in the limit of very weak step-edge barriers. The
nucleation rate is computed exactly, including numerical prefactors.
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I. INTRODUCTION

The understanding of how atomistic processes influe
morphology at large scales is of fundamental importance
controlled growth of crystalline films via deposition tec
niques. The irreversible nucleation of immobile dimers, g
ing rise to new terraces, is a key process for the growth
high symmetry surface. In the preceding paper@1# we have
shown that for the nucleation on top of existing terraces,
usual mean-field~MF! theory@2,3# is equivalent to consider
ing particles as noninteracting: i.e., not feeling each ot
even if they are on the same lattice site, so that they can m
several times before leaving the terrace. Mean-field the
~MFT! counts all these fictitious nucleation events and the
fore leads to an overestimate of the nucleation ratev, which
in most cases is a very poor approximation of the corr
results. For the spatial distribution of nucleation events
have shown in Ref.@1# that a substantial discrepancy b
tween the mean-field and exact results is expected, bec
fictitious nucleations beyond the first one always dominate
d51 andd52.

In this paper we go beyond mean-field theory and pres
a series of exact results. We calculate the spatial@P(n)# and
temporal @Q(t)# distributions of nucleation events. Th
quantityQ(t) is the probability that two atoms meet a timet
after deposition of the second atom and it is formally defin
in Eq. ~3!. The evaluation ofP andQ allows the determina-
tion of the total probabilityW that two atoms meet and thi
allows the exact computation of the nucleation ratev.

The solution of the problem is obtained by mapping t
diffusion of two particles on ad-dimensional terrace into th
motion of a single random walker ind852d dimensions.
The statistics of meeting events between the two adat
~nucleations! is then obtained as the solution of a suitab
first passage problem for thed8-dimensional random walker
In d51 the problem can be treated analytically in full deta
leading to closed form expressions for all quantities of int
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est. In d52 one can easily obtain the results numerica
with arbitrary accuracy.

Results indicate that the spatial distribution of nucleat
sites is very different from the mean-field estimate in t
limit of strong Ehrlich-Schwoebel barriers, both ind51 and
d52. In the opposite limit of zero or weak barriers instea
the difference between the mean-field estimate and the e
result is, for reasonable terrace sizes, quite surprisin
small. The temporal distribution of nucleation events dec
slowly for short times and later exponentially. Finally, th
calculation of the nucleation ratev is completed by the rig-
orous determination of the nucleation probabilityW
5(nP(n). This confirms that MFT is safely applicable on
for weak barriers ind52 and gives the exact expressions f
v that must be used instead of the MF approximate one

The paper is organized as follows. In Sec. II the model
irreversible nucleation is presented and the fundame
quantities needed in the rest of the paper are introduced.
method for the solution of the problem is also outlined. S
tions III and IV are devoted to the presentation of the ex
results obtained ind51 andd52, respectively. In Sec. V
these results are discussed and interpreted in physically
tuitive terms. The conclusions and the perspectives of
work can be found in Sec. VI.

Some of the most important results have been prese
previously in Ref.@4#.

II. THE PROBLEM AND THE METHOD OF SOLUTION

In this section we briefly recall the basic concepts of ir
versible dimer nucleation along with some results, obtain
in the first paper@1#, that will be needed in the following.

We consider particles deposited onto a crystalline terr
of size L, modeled as a discrete lattice~a square lattice in
d52). The flux of particles is uncorrelated, uniform and
intensity F, so that the average interarrival time istdep
5(FLd)21. Once on the terrace, an adatom hops at r
(Dt)2152dD to a randomly chosen nearest neighbor, un
it either meets another adatom or leaves the terrace.

This last process can be hindered by the additio
Ehrlich-Schwoebel~ES! barrier@5# reducing interlayer trans
port to a rate 2dD8: the ES length,ES5(D/D821)a0 mea-
sures the strength of the barrier~in the following the lattice
constanta0 is used as unit length!.

The average time spent by a single adatom on the ter
is the residence time and depends onL and, ,

’
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t res5~b L1a,ES!L/D. ~1!

In the limit ,ES50, t res is equal tot tr , the average time
needed by an adatom to reach the terrace boundary. Dep
ing on the value of,ES, three different regimes may occu
~i! Zero or weak barriers (t tr.t res!tdep); ~ii ! strong barri-
ers (t tr!t res!tdep); ~iii ! infinite barriers (t tr!tdep
!t res).

Particles are deposited according to an exponential di
bution of interarrival times:Pdep(t)5tdep

21 exp(2t/tdep). This
implies that all quantities should be computed for a gene
interarrival timet and then the results should be averag
over Pdep(t). However, we have shown in Ref.@1# that this
is equivalent to considering two particles deposited simu
neously, one with distributionpn

U51/Ld and the other with
an effective distribution

pn
eff5

t res

tdep1t res
pn

S , ~2!

wherepn
S is the normalized solution of the discrete stationa

diffusion equation in the presence of a constant flux. F
infinite barriers~regime iii! pn

eff5pn
S51/Ld. For strong but

finite barriers ~regime ii! pn
eff5(t res /tdep)pn

S

5(t res /tdep)1/Ld. In the limit of zero or weak barriers~re-
gime i! pn

eff5(t res /tdep)pn
S wherepn

S has a parabolic shap
that vanishes at the edges, reflecting the presence of ab
ing boundaries.

Nucleation of dimers takes place when particles are
adjacent lattice sites; here we will assume instead tha
dimer is formed when two particles are on the same site:
avoids useless mathematical complications without mod
ing the physics of the nucleation process.

The physical quantities we are interested in areP(n),
Q(t), andv.

~1! P(n) is the spatial distribution of nucleation event
computed for two adatoms deposited at the same time
normalized distributionspS ~the first! and pU ~the second!.
P(N)(n) is its normalized version.

~2! The distributionQ(t) is the probability that a nucle
ation event occurs at timet, if the two adatoms have bee
deposited at time zero.Q(t) is not considered within the
standard mean-field theory.

P(n) and Q(t) are derived from the same quantity, th
probabilityR(n,t) that a nucleation event occurs on siten at
time t,

P~n!5(
t

R~n,t !, Q~ t !5(
n

R~n,t !. ~3!

We can also defineW, the probability that two atoms mee
before leaving the terrace: it is clearly related toP(n) and
Q(t), because

W[(
n,t

R~n,t !5(
n

P~n!5(
t

Q~ t !. ~4!

W is equal to 1 for large or infinite barriers@regimes~ii !
and~iii !#, but it differs from unity in regime~i!. The normal-
ized spatial distribution is clearlyP(N)(n)5P(n)/W.
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~3! The nucleation ratev is the total number of nucleation
events that occur on the whole terrace per unit time. It
related toP(n) or Q(t) via W,

v5FLd
t res

tdep1t res
W. ~5!

P(n) and Q(t) ~and thenW) depend on thenormalized
initial distributions for the two adatoms. Therefore, they ha
the same expressions in regime~ii ! and~iii !, wherepn

S is just
a constant. From Eq.~5! instead, one immediately realize
thatv has different expressions in each of the three regim

We also consider an artificial model where adatoms
independent diffusing particles. They do not stop when th
meet and each encounter is considered as a~fictitious! nucle-
ation. As shown in Ref.@1#, this model gives exactly the
same results as mean-field theory.

The computation of the quantities of interest requires
evaluation ofR(n,t). Since we consider irreversible dime
formation,R(n,t) is the probability that two particles diffus
ing on ad-dimensional terrace meet for the first time on s
n at time t. A method for treating the diffusion of two par
ticles is to take theird1d coordinates as the coordinates of
single random walker diffusing on ad852d-dimensional hy-
percubic terrace. In this picture a nucleation event cor
sponds to the d8-dimensional walker reaching th
d-dimensional hyperplane where the coordinates of the
particles are equal. The irreversibility of dimer formatio
implies that an absorbing boundary condition must be
posed on thisd-dimensional hyperplane. The probability o
dimer formationR(n,t) is then given by the probability cur
rent orthogonal to the hyperplane.

More specifically, ind51 we pass from two walkers o
coordinatesn andm to a single walker on a square terrac
Nucleation occurs when the walker reaches the diagona
such a terrace (n5m). In d52 we must consider a singl
walker in a four-dimensional space whose coordinates
(n1 ,m1 ,n2 ,m2) and the hyperplane is now a bidimension
plane defined by the conditionsn15n2 andm15m2.

In this way we have reduced the dimer nucleation pro
lem to a first passage problem@6#. The solution of such a
problem @7# is possible analytically ind51 ~Sec. III! and
numerically in higher dimensions~Sec. IV!.

III. RESULTS IN ONE DIMENSION

When the system is one dimensional, the two adatoms
mapped into a two-dimensional walker hopping inside
square lattice of sizeL with probability pm,n(t) to be in site
(m,n) at time t. Assuming that, when two adatoms a
present, one of them, randomly chosen, moves once e
time unit, the discrete evolution equation forpm,n(t) is

pm,n~ t11!5 1
4 @pm11,n~ t !1pm21,n~ t !1pm,n11~ t !

1pm,n21~ t !#, ~6!

where the discrete time unit corresponds now to a phys
time Dt51/(2d8D)51/(4dD).
6-2
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The indicesm,n vary between 1 andL, but in order to use
Eq. ~6! for all terrace sites it is useful to introduce fictitiou
sites in m50,L11 and n50,L11. In this way, boundary
conditions are easily written for generic values of the
barrier: p0,n5ap1,n , pL11,n5apL,n , pm,05apm,1 , pm,L11
5apm,L , wherea5,ES/(11,ES). They apply at any time
and for all edge sites. There is also an additional bound
condition along the square diagonal

pn,n~ t !50, n51, . . . ,L, ~7!

because the two adatoms stop diffusing when they meet.
initial condition is pm,n(0)5pm

Upn
S , but it is also correct to

write pm,n(0)5pm
Spn

U . In order to obtain a spatial distribu
tion P(n) that is properly symmetrical with respect to th
center of the terrace we use the symmetrized expression

pm,n~0!5
1

2
@pm

Upn
S1pm

Spn
U#. ~8!

The basic quantity we want to compute, the nucleat
probability on siten at time t11, is

R~n,t11!5 1
4 @pn11,n~ t !1pn21,n~ t !1pn,n11~ t !

1pn,n21~ t !#. ~9!

In the case of noninteracting particles, the boundary c
dition along the diagonal is dropped and Eq.~9! is replaced
by

R~n,t !5pn,n~ t !. ~10!

An explicit analytic solution of the problem, both for in
teracting and noninteracting particles, is possible in the lim
of zero and infinite ES barriers and will be presented in de
below. As remarked in Sec. II, forP, Q, and W only two
distinct regimes exist, and,ES50,̀ are their representativ
limits.

A. Zero barriers †regime „i…‡

When no ES barrier is present,,ES50 anda50. Hence
the boundary conditions are simplyp0,n5pL11,n5pm,0
5pm,L1150, indicating that edges are absorbing boun
aries. In the limit,ES50 the normalized stationary distribu
tion is

pn
S5

6

L~L11!~L12!
n~L112n!. ~11!

1. Noninteracting adatoms

By separating space and time variables in a way perfe
analogous to the treatment of a single particle@1#, we find
the general solution of Eq.~6!,
03160
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pm,n~ t !5 (
k, j 51

L

Bk j

1

2tFcosS kp

L11D
1cosS j p

L11D G t

sinS mkp

L11D sinS n jp

L11D , ~12!

where the coefficientsBk j are

Bk j5S 2

L11D 2

(
m,n51

L

pm,n~0!sinS mkp

L11D sinS n jp

L11D .

~13!

Given the explicit form~8! of pm,n(0), thecoefficientsBk j
are ~see Ref.@1#!

Bk j5Ak
UAj

S ~14!

5
12

L2~L11!3~L12!

sinS kp

2 D sinS j p

2 D
sinF kp

2~L11!Gsin3F j p

2~L11!G
3sinF Lkp

2~L11!GsinF L j p

2~L11!G ~15!

and this allows the evaluation of all the quantities of intere
Nucleation sites.The spatial distribution of nucleation

sites is

PNI~n!5(
t50

`

R~n,t !5(
t50

`

pn,n~ t !. ~16!

Its normalized versionPNI
(N)(n) is plotted in Fig. 1. As proven

in Ref. @1# within a continuum formalism, it is equal to th
mean-field distribution. This result can be easily proven a
lytically in a discrete lattice as well.

FIG. 1. Normalized spatial distributionP(N)(n) for d51 and
,ES50. Empty circles are for interacting particles, full circles f
noninteracting particles~mean-field theory!. L5100 in the main
part,L520 in the inset.
6-3
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Nucleation times.The distribution of nucleation times is given by

QNI~ t !5 (
n51

L

pn,n~ t ! ~17!

5 (
k, j 51

L

Bk jH 1

2 FcosS kp

L11D1cosS kp

L11D G J t

(
n51

L

sinS nkp

L11D sinS n jp

L11D ~18!

5
L11

2 (
k51

L

BkkcostS kp

L11D ~19!
of
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and it is plotted in Fig. 2. To find analytically the behavior
QNI(t) for largeL, we rewrite it in the following form:

QNI~ t !5
L11

2 (
k51

L

BkkexpF t ln cosS kp

L11D G . ~20!

The coefficientsBkk diverge for small k as k24
„Bkk

.192/@p4k4(L11)(L12)L2#…, so that the dominant contri
bution to the sum for largeL comes from the first modek
51. Expanding the small argument of the cosine this giv

QNI~ t !;expF2
t

2 S p

L11D 2G , ~21!

which is exactly the exponential decay appearing in Fig.
Nucleation rate. Let us first computeWNI5(nP(n)

5( tQ(t) that for noninteracting particles is not a probabili
but the total number of times the two adatoms meet be
leaving the terrace (WNI can be larger than 1!,

WNI5
L11

2 (
k51

L
Bkk

12cosS kp

L11D . ~22!

Using the explicit form ofBkk , we obtain

WNI5
3

L2~L11!2~L12! (
k51

L sin2S kp

2 D sin2S Lkp

2~L11! D
sin6S kp

2~L11! D
.

~23!

For largeL the dominant contribution is provided by the ter
with k51, which gives

WNI.
3

L2~L11!2~L12!F2~L11!

p G6

53S 2

p D 6 ~L11!4

L2~L12!

.0.2L. ~24!

Hence the total nucleation rate is

vNI.FL
t res

tdep
3S 2

p D 6 ~L11!4

L2~L12!
. ~25!
03160
s
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Using the explicit expression@1# t res5t tr5L2/(12D), and
considering only the leading order inL, we find

vNI.
1

4 S 2

p D 6F2L5

D
. ~26!

2. Interacting adatoms

For interacting adatoms it is possible to take advantag
the noninteracting solution~12! by using a trick: we pass
from the initial conditionpm,n(0) @given in Eq. ~8!# to an
auxiliary antisymmetric initial condition

p̃m,n~0!5H pm,n~0! for m,n

0 for m5n

2pn,m~0! for m.n,

~27!

which satisfies the boundary conditionp̃n,n50 along the di-
agonal.

FIG. 2. The temporal distributionQ(t) for d51 andL5100.
From top to bottom, data are for noninteracting particles (,ES5`
and ,ES50) and interacting particles (,ES5` and ,ES50). The
main part of the figure highlights the power-law decay for sh
times~log-log plot!: the solid line goes ast21/2. The inset highlights
the exponential decay for long times~ln-log plot!.
6-4
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Let us observe that the dynamics given in Eq.~6! con-
serves the parity of the spatial distribution, because

p̃m,n~0!52 p̃n,m~0!⇒Bk j52Bjk⇒ p̃m,n~ t !52 p̃n,m~ t !.

~28!

This means that if we start with an antisymmetric dist
bution p̃m,n(0)52 p̃n,m(0), theboundary conditionp̃n,n(t)
50 is obeyed for all times: the two triangles (m.n) and
(m,n) are dynamically disconnected. The solution of E
~6! is therefore still given by Eq.~12!, since the boundary
condition is fully taken into account by the value of th
coefficientsBk j , which depends on the antisymmetric for
of p̃m,n(0).

The coefficientsBk j are given by

Bk j5S 2

L11D 2

(
m,n51

L

p̃m,n~0!sinS mkp

L11D sinS n jp

L11D .

~29!

In this expression we can decompose the summation(m,n as
(m,n1(m.n , in the latter interchange the dumb indic
n,m, and exploit the antisymmetry ofp̃m,n(0). We finally
obtain

Bk j5S 2

L11D 2

(
m,n

pm,n~0!H sinS mkp

L11D sinS n jp

L11D
2~k⇔ j !J [@Bk j

,2Bjk
,#, ~30!

where

Bk j
,5S 2

L11D 2

(
m,n

pm,n~0!sinS mkp

L11D sinS n jp

L11D . ~31!

The evaluation ofBk j is here less straightforward than
the noninteracting case. In particular, some sums are not
ily performed explicitly. This makes difficult the presentatio
of explicit results. Therefore in the following we will prese
only the general results, leaving the coefficientsBk j indi-
cated.

Nucleation sites.Since the regionsm,n and m.n are
equivalent, the probability of a nucleation event on siten at
03160
.

as-

time t11.0 is given by R(n,t11)5 1
2 @ p̃n,n11(t)

1 p̃n21,n(t)#, while for t50 nucleations occur because bo
adatoms are deposited on the same site, i.e., with probab
pn,n(0). Thespatial distribution of nucleation sites is ther
fore

P~n!5pn,n~0!1
1

2 (
t50

`

@ p̃n,n11~ t !1 p̃n21,n~ t !# ~32!

5pn,n~0!1
1

2 (
k, j 51

L
Bk j

12
1

2 FcosS kp

L11D1cosS j p

L11D G
3H sinS nkp

L11D sinF ~n11! j p

L11 G
1sinF ~n21!kp

L11 GsinS n jp

L11D J ~33!

and the normalized distributionP(N)(n) is presented in Fig.
1. The plot clearly shows that the spatial distribution is ve
similar to the mean-field resultPNI

(N)(n), although a small
discrepancy exists~see the discussion in Sec. V A!.

Nucleation times.The distribution of nucleation times fo
interacting particles is

Q~0!5 (
n51

L

pn,n~0!, ~34!

Q~ t11.0!5 (
n51

L
1

2
@ p̃n,n11~ t !1 p̃n21,n~ t !#. ~35!

Once summed, the two terms in Eq.~35! are equal. Hence,

Q~ t11.0!5 (
n51

L

p̃n21,n~ t ! ~36!

5 (
k, j 51

L

Bk jCk jH 1

2FcosS kp

L11D1cosS j p

L11D G J t

,

~37!

where the coefficientsCk j are
Ck j5 (
n51

L

sinFkp~n21!

L11 GsinS j pn

L11D ~38!

5
1

2 H cosF kp

L11
1

L~ j 2k!p

2~L11! GsinF ~ j 2k!p

2 GcosecF ~ j 2k!p

2~L11!G2cosF2
kp

L11
1

L~ j 1k!p

2~L11! GsinF ~ j 1k!p

2 GcosecF ~ j 1k!p

2~L11!G J .

~39!
6-5
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Q(t) is shown in Fig. 2. For short times it decays slow
~as t21/2), while it goes down exponentially for large time
In Appendix A we show in detail that the behavior ofQ(t)
for short and long times can be derived explicitly in the ca
of two adatoms with uniform initial distributions, for whic
the coefficientsBk j are explicitly known: fort!2L2/p2 we
find

Q~ t !.
8

Lp5/2At/2
, ~40!

and for t@2L2/p2,

Q~ t !.
80

9p2L2 expF2
5t

4 S p

L11D 2G . ~41!

No qualitative change is expected if one atom is initia
distributed according topn

S rather thanpn
U : only prefactors

are expected to be different and this is confirmed by
behavior shown in Fig. 2.

Nucleation rate.The probabilityW of a nucleation even
is

W5
1

L
1 (

k, j 51

L
Bk jCk j

12
1

2 FcosS kp

L11D1cosS j p

L11D G . ~42!

In Appendix A we prove that for largeL, W goes to a con-
stant. This constant is found numerically to be roughly eq
to 0.47. Hence, for largeL, the nucleation rate is

v5FL
bL2

D
FLW.0.04

F2L4

D
. ~43!

B. Strong and infinite barriers †regimes„ii … and „iii …‡

With infinite ES barriers,,ES5` and a51. Step edges
are perfectly reflecting barriers and boundary conditions
p1,n5p0,n , pL,n5pL11,n , pm,15pm,0 , pm,L5pm,L11. The
normalized stationary distribution is simplypn

S5pn
U51/L,

because the distribution of the first adatom is still flat wh
the second arrives.

The general solution for a two-dimensional walker is no

pm,n~ t !5 (
k, j 50

L21

Bk j

1

2tFcosS kp

L D1cosS j p

L D G t

Xk~m!Xj~n!,

~44!

where

Xk~n!5tanS kp

2L D sinS nkp

L D1cosS nkp

L D ~45!

and the coefficients are

Bk j5
1

NkNj
(

m,n51

L

pm,n~0!Xk~m!Xj~n! ~46!

with (dk0 is the Kronecker symbol!
03160
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Nk5
L

2 F11tan2S kp

2L D G~11dk0!. ~47!

1. Noninteracting adatoms

The case with noninteracting adatoms is complet
trivial for infinite barriers. At any time,pm,n(t)51/L2 so that
the spatial and temporal distributions of nucleation eve
are constant. The total number of nucleation eventsWNI is
clearly infinite.

2. Interacting adatoms

In a way analogous to the case with zero barriers,
consider antisymmetric initial conditions and we obtain

Bk j5
1

NkNj
(

m,n
pm,n~0!$Xk~m!Xj~n!2~k⇔ j !%

[@Bk j
,2Bjk

,#, ~48!

where

Bk j
,5

1

NkNj
(

m,n
pm,n~0!Xk~m!Xj~n!. ~49!

More explicitly (pm,n(0)51/L2),

Bk j
,5

1

L2NkNj
(
n51

L

Xj~n! (
m51

n21

Xk~m! ~50!

5
1

L2NkNj
(
n51

L F tanS j p

2L D sinS n jp

L D
1cosS n jp

L D G (
m51

n21 F tanS kp

2L D sinS mkp

L D1cosS mkp

L D G .
~51!

Nucleation sites.The distribution of nucleation sites i
given by

P~n!5pn,n~0!1
1

2 (
t50

`

@ p̃n,n11~ t !1 p̃n21,n~ t !# ~52!

5
1

L2 1
1

2 (
k, j 50

L21
Bk j

12
1

2 FcosS kp

L11D1cosS j p

L11D G
3@Xk~n!Xj~n11!1Xk~n21!Xj~n!# ~53!

and it is plotted in Fig. 3@in this caseP(N)(n) and P(n)
coincide, sinceW51]. The distribution has a rounded pea
in the middle of the terrace and vanishes towards the bou
aries.
6-6
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The above expression forP(n) is exact, but it is not easy
to use in applications. A simpler, approximate, expressio
therefore highly desirable. In Sec. V A we show thatP(n) is
well fitted by a hyperbolic cosine. Up to the normalizatio
factor,

P~n!5cosh~p!2coshFpS 2n

L11
21D G . ~54!

In Fig. 4 we compare exact and approximate distributio
the agreement is fair already for relatively small sizes a
very good for large sizes.

Nucleation times.As in the case with no barriers, we hav

Q~0!5 (
n51

L

pn,n~0!, ~55!

FIG. 3. Normalized spatial distributionP(N)(n) for d51 and
,ES5`. Empty circles are for interacting particles, full circles f
noninteracting particles~mean-field approximation!. L5100 in the
main part,L520 in the inset.

FIG. 4. Comparison of the normalized spatial distributi
P(N)(n) for d51 and,ES5` ~circles! with the approximate for-
mula ~54! ~solid line!. L5128 ~main!, L516 ~inset!.
03160
is

:
d

Q~ t11.0!5 (
n51

L

p̃n21,n~ t !. ~56!

Using the expression forp̃m,n(t),

Q~0!5
1

L
, ~57!

Q~ t11.0!5 (
k, j 50

L21

Bk jCk jH 1

2 FcosS kp

L D1cosS j p

L D G J t

,

~58!

where the coefficientsCk j are now

Ck j5 (
n51

L

Xk~n21!Xj~n!. ~59!

The form ofQ(t) is shown in Fig. 2. The decay is the sam
as for zero barriers: for short times it decays ast21/2 and for
large times exponentially. Physically intuitive interpretatio
of these behaviors are discussed in Sec. V B.

Nucleation rate.Since W51, the nucleation rate in re
gime ~ii ! is

v~L !5FL
t res

tdep
5

F2L3,ES

2D
, ~60!

while in regime~iii ! it is simply

v~L !5FL5
1

tdep
. ~61!

C. Intermediate barriers

For intermediate values of the barriers, i.e., values oa
between 0 and 1, an explicit analytic solution of the proble
is not possible, even for noninteracting adatoms. This i
direct consequence of the lack of an explicit solution
intermediate barriers even in the case of a single part
~Ref. @1#!. Nevertheless the problem can easily be solv
numerically for any,ES, through direct calculation of the
dynamical evolution ofpm,n(t), which determinesR(n,t)
and all the quantities of interest.

The systematic error in the results, due to the integrat
of Eq. ~6! up to a finite time, is fully negligible for realistic
values ofL: the probabilityQ(t) that nucleation occurs a
time t decays exponentially for larget and consequently the
systematic error can easily be made exceedingly small.
numerical results presented in this paper can be consid
virtually exact.

As expected, the results for intermediate barrie
smoothly interpolate between the two limits of zero or in
nite barriers,,ES/L being the only relevant parameter.

The spatial distribution of nucleation eventsP(N)(n) is
presented in Fig. 5 forL550 and several values of,ES
(,ES50,10,50,250). Even a small value,ES/L51/5 changes
in a notable way the distributionP(N)(n). The tem-
6-7
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poral distributionQ(t) smoothly interpolates between th
two limit behaviors presented in Fig. 2.

IV. RESULTS IN TWO DIMENSIONS

When the terrace is two dimensional the motion of tw
adatoms can be mapped into a four-dimensional problem
a single random walker:pm1 ,n1 ,m2 ,n2

(t) is the probability of

finding one atom on site (m1 ,n1) and the other in (m2 ,n2) at

FIG. 5. Normalized spatial distributionP(N)(n) for d51 and
L550. Empty circles are for interacting particles, full circles f
noninteracting particles~MFT!. ,ES50 ~top left!, ,ES510 ~top
right!, ,ES550 ~bottom left!, ,ES5250 ~bottom right!.
03160
or

time t. Such a probability obeys the equation of motion

pm1 ,n1 ,m2 ,n2
~ t11!5 1

8 @pm111,n1 ,m2 ,n2
~ t !1pm121,n1 ,m2 ,n2

~ t !

1pm1 ,n111,m2 ,n2
~ t !1pm1 ,n121,m2 ,n2

~ t !

1pm1 ,n1 ,m211,n2
~ t !1pm1 ,n1 ,m221,n2

~ t !

1pm1 ,n1 ,m2 ,n211~ t !

1pm1 ,n1 ,m2 ,n221~ t !# ~62!

with the boundary conditionpñ1 d̃5apñ , where ñ is any
edge site of the four-dimensional hypercube and (ñ1 d̃) is a
nearest neighbor outside the cube. The initial condition i

pm1 ,n1 ,m2 ,n2
~0!5

1

2
@pm1 ,n1

U pm2 ,n2

S 1pm1 ,n1

S pm2 ,n2

U #,

~63!

where, as usual,pm,n
U 51/L2 is the uniform initial distribution

in two dimensions andpm,n
S is the normalized stationary so

lution of the discrete diffusion equation ind52.

A. Zero barriers †regime „i…‡

1. Noninteracting adatoms

For noninteracting adatoms the computation of the qu
tities of interest proceeds along the same lines as in the
dimensional case. The general solution of the equation
motion for the four-dimensional random walker is
pm1 ,n1 ,m2 ,n2
~ t !5 (

k1 , j 1 ,k2 , j 251

L

Bk1 j 1k2 j 2

1

4t FcosS k1p

L11D1cosS j 1p

L11D1cosS k2p

L11D1cosS j 2p

L11D G t

3sinS m1k1p

L11 D sinS n1 j 1p

L11 D sinS m2k2p

L11 D sinS n2 j 2p

L11 D , ~64!
where the coefficientsBk1 j 1k2 j 2
are

Bk1 j 1k2 j 2
5S 2

L11D 4

(
m1 ,n1 ,m2 ,n251

L

pm1 ,n1 ,m2 ,n2
~0!

3sinS m1k1p

L11 D sinS n1 j 1p

L11 D sinS m2k2p

L11 D
3sinS n2 j 2p

L11 D . ~65!

Given the initial condition~63!, the coefficientsBk1 j 1k2 j 2
are

of the form

Bk1 j 1k2 j 2
5Ak1 j 1

U Ak2 j 2

S , ~66!
whereAk j
(U,S) are the coefficients of the expansion ofpm,n

(U,S)

~see Ref.@1#!.
The probabilityR(m,n,t) of a ~fictitious! nucleation event

at time t on site (m,n) is given bypm,n,m,n(t).
Nucleation sites.The spatial distribution of nucleation

sites is

PNI~m,n!5(
t50

`

R~m,n,t !5(
t50

`

pm,n,m,n~ t ! ~67!

and its normalized version is reported in Fig. 6@we plot it
along the diagonal of the square terrace,PNI

(N)(n,n)].
Nucleation times.The distribution of nucleation times is
6-8
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QNI~ t !5 (
m,n51

L

pm,n,m,n~ t ! ~68!

5 (
k1 , j 1 ,k2 , j 251

L

Bk1 j 1k2 j 2H 1

4FcosS k1p

L11D1cosS j 1p

L11D1cosS k2p

L11D
1cosS j 2p

L11D G J t

(
m,n51

L

sinS mk1p

L11 D sinS mk2p

L11 D sinS n j1p

L11D sinS n j2p

L11D ~69!

5S L11

2 D 2

(
k1 , j 151

L

Bk1 j 1k1 j 1H 1

2 FcosS k1p

L11D1cosS j 1p

L11D G J t

~70!
s
,

-

e

-

ing
and it is plotted in Fig. 7. For large times, only the mo
slowly decaying modek151, j 151 contributes to the sum
yielding

QNI~ t !;expF t ln cosS p

L11D G.expF2
t

2S p

L11D 2G .
~71!

Nucleation rate.The total number of times the two ada
toms meet before leaving the terrace is

WNI5 (
m,n51

L

PNI~m,n!

5S L11

2 D 2

(
k1 , j 151

L Bk1 j 1k1 j 1

12
1

2FcosS k1p

L11D1cosS j 1p

L11D G .

~72!

For large values ofL only the mode (1,1,1,1) dominates th
sum, so

FIG. 6. Normalized spatial distributionP(N)(n,n) along the di-
agonal ford52, L532 and,ES50. Empty circles are for interact
ing particles, full circles for noninteracting particles.
03160
t
WNI.S L11

2 D 2 B1111

12
1

2 FcosS p

L11D1cosS p

L11D G
.

2

p2 S L11

L D 6

~73!

and the total nucleation rate is

vNI.FL2
t res

tdep
S 2

p2D S L11

L D 6

. ~74!

Using the expression (t res.25/p6)(L2/D) derived in Ref.
@1#, the leading term inL is

vNI.
64

p8

F2L6

D
. ~75!

FIG. 7. The temporal distribution ford52 andL540. In the
main part 1/Q(t) is plotted vst to highlight the logarithmic decay
for short times. From top to bottom, data are for noninteract
particles (,ES5` and ,ES50) and interacting particles (,ES5`
and ,ES50). The solid line goes as ln(t/t0) @i.e., Q(t);1/ln(t/t0)].
The inset shows the exponential decay ofQ(t) for long times.
6-9
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2. Interacting adatoms

At odds with what happens for the one-dimensional ca
the trick of using an initial condition antisymmetric wit
respect to particle interchange cannot be used in two dim
sions for taking into account the interaction between p
ticles. The physical reason is that in two dimensions t
particles can swap their position without meeting. As a c
sequence, the configuration space cannot be split into
dynamically disconnected regions, because the condi
pm,n,m,n(t)50 holds on a two-dimensional plane that do
not divide the four-dimensional configuration space in
separate domains. Hence it is not possible to implement
additional boundary conditionpm,n,m,n(t)50 by choosing
the initial condition to be antisymmetric. We have not be
able to overcome this problem analytically and therefore
the interacting case we resort to the numerical solution of
~62!, which is easily performed, and gives virtually exa
results~see Sec. III C!. The results forP(N)(n,n) and Q(t)
are presented in Figs. 6 and 7, respectively. The spatial
tribution as given by MF theory agrees with exact resu
even better than ind51; the short time decay forQ(t) does
not follow a power law but rather a logarithmic one@Q(t)
;1/ln(t/t0)#.

For what concerns the total nucleation rate we find
merically W.0.25/ln(L/1.3) and this implies

v.0.008
F2

D

L6

ln~L/1.3!
. ~76!

B. Strong and infinite barriers †regimes„ii … and „iii …‡

The results forQ(t) are presented in Fig. 7 and those f
P(N)(m,n) in Figs. 8 and 9. The spatial distribution along t
diagonal ~Fig. 8! behaves much in the same way as ind
51; a qualitatively similar behavior is found along differe
directions~Fig. 9!. A deeper analysis is deferred to Sec. V

The total number of nucleation eventsW is clearly 1 and
this implies, in regime~ii !

FIG. 8. Normalized spatial distributionP(N)(n,n) along the di-
agonal ford52, L532, and,ES5`. Empty circles are for inter-
acting particles, full circles for noninteracting particles.
03160
e,

n-
r-
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-
o
n

he

n
r
q.

is-
s

-

v5FL2
t res

tdep
5

F2L5,ES

4D
~77!

and in regime~iii !

v5FL25
1

tdep
. ~78!

For intermediate barriers, the results forP(N)(n,n) are
presented in Fig. 10. As ind51, the spatial distribution
interpolates between the two limits of zero and infinite b
riers. As already remarked for the one-dimensional cas
relatively small ES barrier (,ES/L51/5) remarkably affects
the spatial distribution.

FIG. 9. Normalized spatial distributionP(N) for d52, L532
and ,ES50. Full circles are for noninteracting particles. Emp
symbols are for interacting particles: along the diagonal~circles!,
along one edge~squares!, and in the middle, parallel to one edg
~diamonds!.

FIG. 10. Normalized spatial distributionP(N)(n,n) along the
diagonal for d52 and L520. Empty circles are for interacting
particles, full circles for noninteracting particles.,ES50 ~top left!,
,ES54 ~top right!, ,ES520 ~bottom left!, ,ES5100 ~bottom right!.
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V. DISCUSSION OF THE RESULTS

A. The spatial distribution

The form of the spatial distribution of nucleation sites h
been presented in the previous two sections both in one
two dimensions and for all values of the ES barrier. So
remarks are in order.

As expected@1#, we find that the mean-field assumptio
for the distribution of nucleation sitesis in general not exact
both in one and in two dimensions, for all values of,ES and
for all L. The origin of the discrepancy between the ex
form of P(n) and the MF counterpart is clear: the mean-fie
approximation is equivalent to considering particles as n
interacting, i.e., taking into account not only the first nuc
ation event between the particles, but also all subseq
encounters between them that would occur should they k
diffusing after meeting.

Although not exactly the same, the mean-field distribut
is howevera very good approximationof the true spatial
distribution, for zero or weak ES barriers, particularly ind
52. This result is somewhat striking, if we consider that t
ratio WNI /W is proportional toL in d51 @Eq. ~24!# and to
ln L in d52 @Eq. ~73!#. Hence the relative weight of succe
sive nucleations diverges for growingL; neverthelessPNI(n)
is very close toP(n), indicating that the distribution of al
nucleation events following the first one is very similar to t
distribution of the first.

Things are radically different for large ES barriers. In th
case the discrepancy between MF and true distribution
remarkable. Also this result is somewhat counterintuiti
Particles are distributed uniformly at the beginning and e
of them would remain like that forever in the absence of
other: this is the reason why the spatial distributionPNI for
noninteracting particles is uniform. The interaction betwe
particles breaks this uniformity. Consider, for example,
one-dimensional case. The nucleation probability on sitn
close to the center of the terrace, is the sum of the statis
weight of all pairs of random walks~one for each particle!
with the constraint that they intersect for the first time inn. If
the siten is close to an edge, one of these walks is reflec
by the boundary and the weight of walks intersecting for
first time in n is strongly reduced.

An ‘‘entropic’’ mechanism is present for weak barriers
well: in this case nucleation close to an edge is made diffi
by adsorbing boundaries, which reduce the probability
find an atom close to the steps. For weak barriersP(n) is
peaked around the middle of the terrace also because
initial distribution for one atom is not uniform, but paraboli

Notice however that for infinite barriers the mean-fie
distribution, which includes the contribution of success
encounters, is completely flat. This indicates that, even if
relatively unusual for particles to meet close to edges, o
this happens they tend to meet there several times and
restores uniformity in the distribution of all nucleatio
events.

In Eq. ~54! we have proposed an approximate express
for the distributionP(n) in the limit of infinite ES barriers. It
has been derived assuming a behavior as an hyperbolic
sine
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P~n!5a0@a12cosh~a2n2a3!# ~79!

and imposing thatP(n) is symmetrical with respect the cen
ter of the terrace (a3 /a25(L11)/2) and thatP(0)5P(L
11)50 @a15cosh(a3)#. The former condition is obvious
and the latter derives from the numerical evidence t
P(1)/P@(L11)/2# goes to zero for increasingL. Once both
conditions have been imposed, we obtain

P~n!5a0Fcosha32coshS 2a3n

L11
2a3D G . ~80!

There is only one fit parameter,a3, becausea0 is constrained
by the normalization condition forP(n). From a nonlinear
curve fitting for relatively smallL we can extrapolate tha
a3(L) tends to a constant value of order 3.11 asL grows. We
have, somewhat arbitrarily, seta3(`) equal top.

B. The temporal distribution

The results for the temporal distribution of nucleatio
eventsQ(t) show in all cases a slow decay for short tim
~as a power law ind51, logarithmic ind52) followed by
an exponential decrease for larger times. This behavior
been obtained by solving exactly, analytically or numerica
the evolution equation for the particles on the terrace.
physical meaning is clarified further by rederiving these
sults by means of more transparent but less rigorous a
ments: the decay for short times is interpreted in terms
first passage properties of random walks in an unboun
space; the long time decay is the combined effect of
exponentially decreasing probability that both particles
still on the terrace at timet and the probability that they hav
not yet met.

Let us first discuss the behavior at short times and c
sider the relative coordinate of the two particles as the co
dinate of a fictitious particleC: nucleation occurs whenC
reaches the origin. The initial spatial distribution probabil
for C @rC(r )# is a function ofrA andrB complicated by the
presence of boundaries. However, we are interested in
behavior for short times, i.e., times such that particles are
affected by the presence of terrace edges. Therefore we
assume an initial spatial distributionrC(r ) uniform in a re-
gion of linear sizeL around the origin (rC51/Ld) and zero
outside. The irrelevance of boundaries in the short time
gime is confirmed by Figs. 2 and 7:Q(t) has the same be
havior, independently of step-edge barriers.

We now defineF(r ,t) as the first passage probability inr
at timet starting from the origin at time zero. The probabili
that atomA, leaving fromr at t50 arrives for the first time
in the origin at timet is clearlyF(2r ,t), so that

Q~ t !5(
r

rC~r !F~2r ,t !. ~81!

Let us also defineP(r ,t) as the probability that a particle i
in r at time t, being at the origin at time zero. Att50 we
have P(r ,0)5d r ,0 and F(r ,0)50. P(r ,t) and F(r ,t) are
connected by@8#
6-11



he
p

on

es

g
-
at

he
e

.

the

-
-
he

-

e
t in
ase

o-
ed

PAOLO POLITI AND CLAUDIO CASTELLANO PHYSICAL REVIEW E66, 031606 ~2002!
P~r ,t !5 (
t50

t

F~r ,t!P~0,t2t!. ~82!

We write Eq. ~82! for spatial argument2r , multiply both
sides byrC(r ),

rC~r !P~2r ,t !5 (
t50

t

rC~r !F~2r ,t!P~0,t2t! ~83!

and sum overr,

(
r

rC~r !P~2r ,t !5 (
t50

t

Q~t!P~0,t2t!. ~84!

At short timesP(r ,t) is negligible in the region where
rC(r ) vanishes. Therefore we can takerC out of the summa-
tion and use the normalization ofP(2r ,t), obtaining

1

Ld 5 (
t50

t

Q~t!P~0,t2t!. ~85!

In d51, we pass to the continuuum in time@P(0,t2t)
51/(t2t)1/2#,

1

L
5E

0

t

dt
Q~t!

~ t2t!1/2
~86!

and settingt5ts, we obtain

1

L
5t1/2E

0

1

ds
Q~ ts!

~12s!1/2
, ~87!

which impliesQ(t);t21/2.
In two dimensions we separate the termt5t in Eq. ~85!,

1

L2 5E
0

t21

dt
Q~t!

t2t
1Q~ t ! ~88!

5E
0

121/t

ds
Q~ ts!

12s
1Q~ t ! ~89!

.Q~ t !E
0

121/t ds

12s
1Q~ t ! ~90!

.Q~ t !@11 ln t# ~91!

and we obtainQ(t);1/(11 ln t).
In conclusion, at short timesQ(t) decays as a power law

@Q(t);1/At# in d51 and logarithmically @Q(t)
;1/ln(t/t0)# in d52.

Let us consider now the behavior for long times. T
probability that a single adatom remains on the terrace u
time t is ~see Ref.@1#! S(t);exp(2aSt). In d51 one has
aS5 1

2 @p/(L11)#2 for zero barriers andaS50 for infinite
barriers. It is better to introduce a continuous time notati
03160
to

.

The time step for a single particle isDt51/(2dD), while for
two particles diffusing on the same terrace it isDt
51/(4dD), so that

S~ t !;exp~22aSdDt!. ~92!

The probability that two adatoms will meet at timet decays
as

Q~ t !;exp~24aQdDt!. ~93!

In Sec. III we determined that for noninteracting particl
aQ5 1

2 @p/(L11)#2 for zero barriers andaQ50 for infinite
barriers, while for interacting particlesaQ5 5

4 (p/(L11))2

for zero barriers andaQ5 1
4 (p/L)2 for infinite barriers.

All these findings are simply rationalized by the followin
argument. We defineG(t) as the probability that two ada
toms confined on the terrace will meet for the first time
time t: it is therefore equal toQ(t) in the limit of infinite
barriers. For long times,

G~ t !;exp~24aGdDt!. ~94!

We claim that, for interacting adatoms,Q(t) is given by
the probability that each of the two adatoms is still on t
terrace times the probability that they meet for the first tim
at time t,

Q~ t !;S2~ t !G~ t ! ⇒ aQ5aS1aG . ~95!

In the noninteracting case, clearlyG(t) does not play any
role. Then

Q~ t !;S2~ t ! ⇒ aQ5aS . ~96!

If we neglect the differences betweenL andL11 at the
denominators ofaQ , the relations~95! and ~96! are both
verified in the limits,ES50 and,ES5`.

In d52 the value ofaQ is not known analytically. How-
ever, relations~95! and ~96! have been verified numerically

C. The nucleation rate

In this paper we have computed exactly the scaling of
nucleation rate in all regimes, ind51 andd52, for both the
noninteracting~mean-field! and the interacting case. The re
sults confirm those of Ref.@1#, where the rigorous calcula
tion of W was lacking. Mean-field theory overestimates t
nucleation rate by a factor that scales, in regime~i! ~zero or
weak barriers!, asL in d51 and lnL in d52. In the limit of
strong barriers@regime~ii !# the error scales as,ES in d51
and as,ES/L in d52. Notice that the latter is a large quan
tity, since in this regime,ES@L. For infinite barriers@regime
~iii !# the mean-field picture trivially breaks down. Henc
mean-field theory is generally strongly inaccurate, excep
two dimensions for weak barriers; however, even in this c
logarithmic corrections rendervMF not completely reliable.

Our treatment allows the evaluation not only of exp
nents, but also of prefactors. In particular, this is perform
analytically for zero or strong barriers ind51 @Eqs.~43! and
~60!# and for strong barriers ind52 @Eq. ~77!#, while for
6-12
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d52 and no barriers we have evaluated the prefactor
merically. For reference, we report in Table I the value of
nucleation rate in the different cases.

Finally, we want to remark that ind51 for zero barriers,
not only the asymptotic behavior for largeL, but also the
exact value ofv for any L can be determined analytically
One just needs to perform the sum ofL2 terms@Eq. ~42!#.

VI. CONCLUSIONS

In this paper and in the preceding one@1# we have pre-
sented a rather complete study of the problem of irrevers
dimer nucleation on top of terraces during epitaxial grow
We have analyzed in detail the mean-field approach to
problem, identified its weaknesses and provided a phys
interpretation for them. Then we have solved the problem
analytical means or~when needed! numerically. In this way
we have derived exact results for the spatial and temp
distributions of nucleation events and for the total nucleat
rate.

We believe that these results provide a relevant contr
tion to the investigation of crystal growth from both the e
perimental and the theoretical point of view.

The dependence of the nucleation ratev on the terrace
sizeL and the ES length,ES is a crucial piece of information
for the interpretation of experimental results, for examp
the evaluation of the Ehrlich-Schwoebel barrier. The me
field approximation has been widely used so far: as alre
pointed out@9#, this introduces a systematic underestimate
the strength of the ES barrier. The exact expressions fov,
derived in this work, must replace the MF approximate f
mulas for a correct interpretation of experimental data.

From the theoretical point of view, also the spatial dist
bution plays an important role. Sometimes, ‘‘mesoscop
models are used to describe the growth process in the
monolayer regime@10# or in the multilayer regime@11#. The
rule for dimer formation must be supplemented with the s
tial distributionP(n) of nucleation sites: as we have argue
if additional step-edge barriers are not negligible, exact
sults are completely different from mean-field predictions

Let us finally mention some possible extensions of
present work. In this paper and in the preceding one@1#, we
have discussed irreversible nucleation on top of compact
races: it is therefore natural to wonder what occurs if th
hypotheses are relaxed.

The possibility of dimer dissociation introduces new tim

TABLE I. Value of the nucleation ratev, including the correct
prefactors. In regime~iii ! of infinite barriers,v5(FLd)21.

d51 d52

Weak barriers
v.0.4

F2L4

D
v.0.008

F2L6

D ln(L/1.3)
@regime~i!#

Strong barriers
v5

1
2

F2L3,ES

D
v5

1
4

F2L5,ES

D
@regime~ii !#
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scales: the average lifetimes of all unstablej clusters (2< j
< i * 11). Within the framework presented in this paper, th
problem is mapped into the random walk of a particle in
suitable high-dimensional space with, in general, a spati
varying diffusion coefficient. This inhomogeneity reflects t
fact that unstablej clusters diffuse and break up with rate
different from the single adatom diffusion coefficient.
many cases the full solution is therefore beyond reach, e
numerically~unlessi * andL are very small!.

However, in the simplest cases, our approach may stil
fruitful. Let us consider for examplei * 52 andd51: three
particles must meet~in the same lattice site! in order to
nucleate a stable trimer. When two particles meet they fo
a dimer that dissociates after a typical timetdis . If tdis is
much smaller than all other time scales, two adatoms diff
as if they were noninteracting, the 3d walker diffuses isotro-
pically and we must just consider itsirreversible passage
along the diagonal (x15x25x3). The same applies for ge
nericd and i * as long as dissociation times of unstable clu
ters are small. This case is also of interest to test rec
scaling approaches@12# valid in the same limit (tdis→0).

The second natural extension of the present work cons
in considering nucleation on top of fractal islands instead
compact ones. The framework of our method remains
changed.

A further extension is to take into account the possibil
of reevaporation of deposited particles.

Note added in proof.We have recently@13# extended the
model, discussed in this and in the preceding paper, to
into account the nonuniformity of the Ehrlich-Schwoeb
barrier at the step edge, because of the existence of ki
and the nonuniformity of the incoming flux, because of ste
ing effects.

APPENDIX: ASYMPTOTIC BEHAVIORS
OF THE TEMPORAL DISTRIBUTION IN dÄ1

In this Appendix we present some detailed results for
one-dimensional case with zero ES barriers and both a
toms having a uniform initial distribution. This is, of cours
not physically sensible, since the effective initial distributio
of the second adatom has a parabolic form for,ES50. How-
ever, contrary to the physically sensible case, the evalua
of the coefficientsBk j

, is not difficult and this allows an ex
plicit analytic evaluation of the behavior ofQ(t), which will
differ from the realistic one only in the prefactors.

A simple, although lengthy, evaluation of the coefficien
leads to

Bk j
,5

2

~L11!2L2 FcotS 1

2

kp

L11DS12cosecS 1

2

kp

L11DS2G ,
~A1!

where

S15sinS L

2

j p

L11D sinS j p

2 D cosecS 1

2

j p

L11D ~A2!

and
6-13
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S25
1

2
sinF2

1

2

kp

L11
1

~ j 1k!p

2 GsinFL~ j 1k!p

2~L11! GcosecF j 1k

2

p

L11G1
1

2
sinF1

2

kp

L11
1

~ j 2k!p

2 G
3sinFL~ j 2k!p

2~L11! GcosecF j 2k

2

p

L11G . ~A3!
We now want to calculate the temporal distribution

Q~ t11.0!5 (
n51

L

p̃n21,n~ t ! ~A4!

5 (
k, j 51

L

Bk jCk jH 1

2FcosS kp

L11D
1cosS j p

L11D G J t

, ~A5!

where the coefficientsCk j are given in Eq.~38!.
In the limit of largeL, the coefficientsCk j are nonvanish-

ing only for oddj 2k ~except fork5 j , butBkk50) and their
value is

Ck j52kS 1

j 2k
1

1

j 1kD5
2k j

k22 j 2 . ~A6!

In the same limit

S15
2L

j p
sin2

j p

2
, ~A7!

S25
L

p

2 j

j 22k2 . ~A8!
03160
Therefore,

Bk j
,5

8

L2kp2 F1

j
sin2

j p

2
2

j

j 22k2G , ~A9!

and after some algebra

Bk j5
8

p2L2

1

jkF ~21!k1
k21 j 2

k22 j 2G ~A10!

and

Bk jCk j5
16

p2L2 F ~21!k

k22 j 21
k21 j 2

~k22 j 2!2G . ~A11!

The dominant contribution toQ(t) comes fromj 5k21 or
j 5k11,

Bk,k61Ck,k615
16

p2L2F ~21!k

72k21
1

2k262k11

~72k21!2 G .
~A12!

Hence
Q~ t !.
16

p2L2 H (
k51

L21 F ~21!k

22k21
1

2k212k11

~22k21!2 GexpF2
t

4 S p

L11D 2

~2k212k11!G1 (
k52

L F ~21!k

2k21
1

2k222k11

~2k21!2 G
3expF2

t

4 S p

L11D 2

~2k222k11!G J . ~A13!

We neglect the first term in both sums and approximate the sums according to the Euler-Maclaurin formula:

(
k51

L

f k5E
1

L

dk f~k!1
1

2
@ f 11 f L#. ~A14!

Since in this casef L! f 1, we neglectf L ,

Q~ t !.
16

p2L2 H E
1

L21

dk
2k212k11

~22k21!2 expF2
t

4S p

L11D 2

~2k212k11!G1
5

9
expF2

5t

4 S p

L11D 2G1E
2

L

dk
2k222k11

~2k21!2

3expF2
t

4S p

L11D 2

~2k222k11!G J . ~A15!
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The integrals can be evaluated by considering for the
tegrand the limit for largek, and one obtains

Q~ t !.
8

p2L2

L

pAt/2
F E

pAt/2/L

pAt/2
dxe2x2

1E
2pAt/2/L

pAt/2
dxe2x2G

1
80

9p2L2 expF2
5t

4 S p

L11D 2G . ~A16!

The upper limit of the integrals can be shifted to`,

Q~ t !.
8

p3LAt/2
F E

pAt/2/L

`

dxe2x2
1E

2pAt/2/L

`

dxe2x2G
1

80

9p2L2 expF2
5t

4 S p

L11D 2G . ~A17!
ys

the

03160
- If t!(2L2/p2) each integral goes toAp/2 and the first
term prevails on the exponential; in the limitt@(2L2/p2)
the opposite is true. So,Q(t).8/(Lp5/2At/2) for t
!(2L2/p2) and Q(t).80/9p2L2exp„25t/4@p/(L11)#2

…

for t@(2L2/p2).
By summingQ(t) over t one obtainsW.

W.E
0

2L2/p2

dtQ~ t !5E
0

2L2/p2

dt
8

Lp5/2At/2

.
32

p7/2
.0.58 . . . ~A18!
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