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Process of irreversible nucleation in multilayer growth. Il. Exact results in one and two dimensions
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We study irreversible dimer nucleation on top of terraces during epitaxial growth in one and two dimensions,
for all values of the step-edge barrier. The problem is solved exactly by transforming it into a first passage
problem for a random walker in a higher-dimensional space. The spatial distribution of nucleation events is
shown to differ markedly from the mean-field estimate except in the limit of very weak step-edge barriers. The
nucleation rate is computed exactly, including numerical prefactors.
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[. INTRODUCTION est. Ind=2 one can easily obtain the results numerically,

Th d di fh - il with arbitrary accuracy.
e understanding of how atomistic processes Influenceé pagits indicate that the spatial distribution of nucleation

morphology at large scales is of fundamental importance fogjtes is very different from the mean-field estimate in the
controlled growth of crystalline films via deposition tech- |imit of strong Ehrlich-Schwoebel barriers, bothds=1 and
nigues. The irreversible nucleation of immobile dimers, giv-d=2. In the opposite limit of zero or weak barriers instead,
ing rise to new terraces, is a key process for the growth of ghe difference between the mean-field estimate and the exact
high symmetry surface. In the preceding pajfgrwe have result is, for reasonable terrace sizes, quite surprisingly
shown that for the nucleation on top of existing terraces, thémall. The temporal distribution of nucleation events decays
usual mean-fieldMF) theory[2,3] is equivalent to consider- Slowly for short times and later exponentially. Finally, the
ing particles as noninteracting: i.e., not feeling each othef@lculation of the nucleation rate is completed by the rig-

even if they are on the same lattice site, so that they can me8fOUs determinatio_n of the nu_cleation pro_babilitw
y y =>,P(n). This confirms that MFT is safely applicable only

several times before leaving the terrace. Mean-field the0r¥orweak barriers ird=2 and qives the exact expressions for
(MFT) counts all these fictitious nucleation events and there- 9 P

fore leads to an overestimate of the nucleation aatevhich @ that must be used instead of the MF approximate ones.

) ) e £ th The paper is organized as follows. In Sec. Il the model for
IN Most cases Is a very poor approximation of the Correc o ersiple nucleation is presented and the fundamental

results. For the spatial distribution of nucleation events we,antities needed in the rest of the paper are introduced. The

have shown in Ref[1] that a substantial discrepancy be- method for the solution of the problem is also outlined. Sec-

tween the mean-field and exact results is expected, becauggns |11 and IV are devoted to the presentation of the exact

fictitious nucleations beyond the first one always dominate iftesults obtained inl=1 andd=2, respectively. In Sec. V

d=1 andd=2. these results are discussed and interpreted in physically in-
In this paper we go beyond mean-field theory and presentitive terms. The conclusions and the perspectives of this

a series of exact results. We calculate the sppBé&h)] and  work can be found in Sec. VI.

temporal [Q(t)] distributions of nucleation events. The  Some of the most important results have been presented

quantityQ(t) is the probability that two atoms meet a timne previously in Ref[4].

after deposition of the second atom and it is formally defined

in Eq. (3). The evaluation oP andQ allows the determina- !l THE PROBLEM AND THE METHOD OF SOLUTION
tion of the total probabilityW that two atoms meet and this  |n this section we briefly recall the basic concepts of irre-
allows the exact computation of the nucleation rate versible dimer nucleation along with some results, obtained

The solution of the problem is obtained by mapping thein the first papef1], that will be needed in the following.
diffusion of two particles on a-dimensional terrace into the We consider particles deposited onto a crystalline terrace
motion of a single random walker id’=2d dimensions. of sizeL, modeled as a discrete lattica square lattice in
The statistics of meeting events between the two adatom@=2). The flux of particles is uncorrelated, uniform and of
(nucleation$ is then obtained as the solution of a suitableintensity F, so that the average interarrival time igep
first passage problem for thi-dimensional random walker. =(FL®)"*. Once on the terrace, an adatom hops at rate
In d=1 the problem can be treated analytically in full detail, (At) "*=2dD to a randomly chosen nearest neighbor, until

leading to closed form expressions for all quantities of inter-t either meets another adatom or leaves the terrace.
This last process can be hindered by the additional

Ehrlich-SchwoebelES) barrier[5] reducing interlayer trans-
. portto arate 2D': the ES lengtif gs=(D/D’ —1)a, mea-
sures the strength of the barrign the following the lattice
constanta, is used as unit lengih
The average time spent by a single adatom on the terrace
is the residence time and dependsloand € g,
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Tres=(BL+alggL/D. (1) (3) The nucleation rate is the total number of nucleation
events that occur on the whole terrace per unit time. It is
In the limit €gs=0, 7. is equal tor,, the average time related toP(n) or Q(t) via W,
needed by an adatom to reach the terrace boundary. Depend-

ing on the value of g, three different regimes may occur: Tres

. h .. . _ d

(i) Zero or weak barriersr, = r,.s<74¢); (ii) strong barri- w=FL Taeot Tos W. ®
ers (ry<Tres<Tgep; (iii) infinite barriers (< rgep epres

< Treo)-

! . . ... P(n) andQ(t) (and thenW) depend on thenormalized
Particles are deposited according to an exponential distrigjtia| gistributions for the two adatoms. Therefore, they have
bution of interarrival imesP ge 7) = 74 XP(— 7 7uep- ThIS  the same expressions in regitiie andiiii), wherep is just
!mplles.that 'aII guantities should be computed for a generic, -onstant. From Eq5) instead, one immediately realizes
interarrival time 7 and then the results should be averagedya , has different expressions in each of the three regimes.
over Pgef7). However, we have shown in Refl] that this We also consider an artificial model where adatoms are
is equivalent to considering two particles deposited S'mUItaTndependent diffusing particles. They do not stop when they

neously, one with distributiop, =1/L" and the other with |\ ,,aet and each encounter is considered @stitious) nucle-

an effective distribution ation. As shown in Ref[1], this model gives exactly the
eff Tres s same results as mean-field theory.
Pn="—"""Pn; 2 The computation of the quantities of interest requires the
Tdep™ Tres

evaluation ofR(n,t). Since we consider irreversible dimer

wherepﬁ is the normalized solution of the discrete stationaryformation,R(n,t) is the probability that two particles diffus-
diffusion equation in the presence of a constant flux. Foing on ad-dimensional terrace meet for the first time on site
infinite barriers(regime iii) pﬁﬁz pﬁ: 1/L9. For strong but n at timet. A method for treating the diffusion of two par-
finite barriers  (regime ii pﬁﬁ:(Tres/Tdep)pﬁ ticles is to take theid+d coordinates as the coordinates of a
= (7res/ Taep1/LY. In the limit of zero or weak barrierge-  Single random walker diffusing ond = 2d-dimensional hy-
gime i) pﬁﬂ:(Tres/Tdep)p‘:’ wherep? has a parabolic shape percubic terrace. In this picture a nucleation event corre-
that vanishes at the edges, reflecting the presence of absofonds to the d’-dimensional walker reaching the
ing boundaries. d-dimensional hyperplane where the coordinates of the two

Nucleation of dimers takes place when particles are ofparticles are equal. The irreversibility of dimer formation
adjacent lattice sites; here we will assume instead that 41Plies that an absorbing boundary condition must be im-
dimer is formed when two particles are on the same site: thig0Sed on thii-dimensional hyperplane. The probability of
avoids useless mathematical complications without modifydimer formationR(n,t) is then given by the probability cur-

ing the physics of the nucleation process. rent orthogonal to the hyperplane.
The physical quantities we are interested in &@), More specifically, ind=1 we pass from two walkers of
Q(t), andw. coordinatesn andm to a single walker on a square terrace.

(1) P(n) is the spatial distribution of nucleation events, Nucleation occurs when the walker reaches _the diagonal of
computed for two adatoms deposited at the same time witRUCh @ terracen=m). In d=2 we must consider a single
normalized distributiongS (the firsy and pY (the secony walker in a four-dimensional space whose coordinates are
PMN)(n) is its normalized version. (ny,mq,ny,my) and the hyperplane is now a bidimensional

(2) The distributionQ(t) is the probability that a nucle- Plane defined by the conditiomg =n, andm,=m,.
ation event occurs at time if the two adatoms have been [N this way we have reduced the dimer nucleation prob-
deposited at time zerdQ(t) is not considered within the |€M to a first passage probleff]. The solution of such a
standard mean-field theory. probIem[?] is ppssmle_ analy_t|cally i=1 (Sec. Il) and
P(n) and Q(t) are derived from the same quantity, the Numerically in higher dimensionSec. V).
probability R(n,t) that a nucleation event occurs on gitat
time t, I1Il. RESULTS IN ONE DIMENSION

P(n)= E R(N), Q)= 2 R(N,1). 3) When 'ghe system is one d_lmen5|onal, the two adatoms are
t n mapped into a two-dimensional walker hopping inside a
] - square lattice of siz& with probability p,, ,(t) to be in site
We can also defin@/, the probability that two atoms meet (m,n) at time t. Assuming that, when two adatoms are
before leaving the terrace: it is clearly relatedROn) and  present, one of them, randomly chosen, moves once every

Q(t), because time unit, the discrete evolution equation oy, ,(t) is
W= R(n,t)=2 P(n)=2 Q(1). (4) pm,n(t+l):%[pm+1,n(t)+pmfl,n(t)+pm,n+1(t)
n,t n t
+ pm,nfl(t)]a (6)

W is equal to 1 for large or infinite barriefsegimes(ii)
and (iii )], but it differs from unity in regimdi). The normal-  where the discrete time unit corresponds now to a physical
ized spatial distribution is clearlp™(n)=P(n)/W. time At=1/(2d'D)=1/(4dD).
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The indicean,n vary between 1 ant, but in order to use 0.02

Eq. (6) for all terrace sites it is useful to introduce fictitious
sites inm=0L+1 andn=0L+1. In this way, boundary
conditions are easily written for generic values of the ES

barrier: pon=apin, Pr+in=aPLn, Pmo=aPm1: PmL+1 s %,
=apmL, Wherea={gs/(1+€gg. They apply at any time 3
and for all edge sites. There is also an additional boundary ‘=
condition along the square diagonal =

ee. 0.1
0.01 | Be°

)
.
®
si
aﬂ
[}

P(N)

005 . 7
Pnn(t)=0, n=1,... L, (7) . .

because the two adatoms stop diffusing when they meet. The
initial condition is P A(0)=pYp3, but it is also correct to . . . .
write pp, n(0)= PPy In order to obtain a spatial distribu- 0 20 40 60 80 100
tion P(n) that is properly symmetrical with respect to the n

center of the terrace we use the symmetrized expression

0.. L
0 5 10 15 20

FIG. 1. Normalized spatial distributioR™(n) for d=1 and
€ezs=0. Empty circles are for interacting particles, full circles for
noninteracting particlesmean-field theory L=100 in the main

Pm.n(0)= _[pmps+ PaPrl. 8 part,L=20 in the inset.
- 1 K
The basic quantity we want to compute, the nucleation ()= E B cos( 77 )
probability on siten at timet+1, is mn kigt L+1
jm \ ' [ mka njm
R(n t+1) 4[pn+1n(t)+pn ln(t)+pn n+1(t) +co m sinf —— L+1 sinf —— L+1 (12)
+Pnn-1(D]. €) »
where the coefficient8y; are
In the case of noninteracting particles, the boundary con- 2 L mkar njm
dition along the diagonal is dropped and is replaced .
0y g g pp E8) is rep Bi=| 51 E Pm.n(0)sin le)sm i1
(13
R(N,t)=pnn(t). (100 Given the explicit form(8) of py, ,(0), thecoefficientsBy;
are (see Ref[1])
An explicit analytic solution of the problem, both for in- Urs
teracting and noninteracting particles, is possible in the limits Byj= Ak A (14
of zero and infinite ES barriers and will be presented in detall
below. As remarked in Sec. Il, foP, Q, and W only two sinl =2 kK sin .” jm
distinct regimes exist, anfi.g=0,0 are their representative 12 2 2
limits. AL DRLA2) Tk T
2(L+1) 2(L+1)
A. Zero barriers [regime (i)] .
H . i Lkmw | | Ljm 15
When no ES barrier is preserftzs=0 anda=0. Hence sin 2L+ si 20L+1) (15

the boundary conditions are SimplPon=PL+10=Pmo

N .pm,,_H:O, .|n_d|cat|ng that edge§ are at_)sorbmg. b(_)und'and this allows the evaluation of all the quantities of interest.
aries. In the limitf =0 the normalized stationary distribu-

o Nucleation sites.The spatial distribution of nucleation
tion Is sites is

n(L+1—n). (11

s__ = - 0 0
P+ D(L+2) PN|(n)=t:EO R(n,t)=tzo D). (16)

1. Noninteracting adatoms Its normalized versio®{\)(n) is plotted in Fig. 1. As proven

By separating space and time variables in a way perfectlyn Ref. [1] within a continuum formalism, it is equal to the
analogous to the treatment of a single partidé we find  mean-field distribution. This result can be easily proven ana-
the general solution of Eq6), Iytically in a discrete lattice as well.
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Nucleation timesThe distribution of nucleation times is given by

L
Qui()= 2, Pon(t) 17
. 1 kw kar - nkar njm
:k,,Ezl Bki(? S(L+1 +COS(LH 2 S'”(L+1)S'” [+1 (18
L
L+1 km
:T kzl BkaO§ m (19

and it is plotted in Fig. 2. To find analytically the behavior of Using the explicit expressiofl] 7,.s= 7, =L%/(12D), and

Qni(t) for largeL, we rewrite it in the following form: considering only the leading order in we find
L
k 1(2\F2L°
QNI(t)_ 2 BkkeXF{t In cos(m (20) wN= Z(;) 5 (26)

The coefficientsB,, diverge for smallk as k™* (By
=192[ 7*k*(L+1)(L+2)L?]), so that the dominant contri-
bution to the sum for largé comes from the first modk For interacting adatoms it is possible to take advantage of
=1. Expanding the small argument of the cosine this giveshe noninteracting solutioi12) by using a trick: we pass
from the initial conditionp, ,(0) [given in Eq.(8)] to an
auxiliary antisymmetric initial condition

2. Interacting adatoms

2

t
QN|(t)~9XF{—§ 51 (21)

Pmn(0) for m<n
which is exactly the exponential decay appearing in Fig. 2.

Nucleation rate.Let us first computeWy=2,P(n) Pm,n(0)= 0 for m=n (27)
=3,Q(t) that for noninteracting particles is not a probability —Pn,m(0) for m>n,
but the total number of times the two adatoms meet before
leaving the terraceWy, can be larger than)1 which satisfies the boundary conditipp ,=0 along the di-
L agonal.
L+l Bik
2 : (22)
= 1 { k7 10
L1
Using the explicit form ofB,,, we obtain 107
k Lk
W 3 EL: snz( S|n2(2(|_+1) —10°
NTLAL+DAL+2) & o km ' g
sin
2(L+1) ,
(23 10
For largeL the dominant contribution is provided by the term
ith k=1, which gi -0 '
W  WhICh gives 10 0 5000 10000
3 2(L+1)]%  [2\® (L+1)* 5 N 5 3 x 5
W= > 5 [ =3|—| V0= 10 10 10 10 10 10
LAL+1)%(L+2)| L2(L+2) t
=0.2. (24 FIG. 2. The temporal distributio®(t) for d=1 andL=100.

From top to bottom, data are for noninteracting particléss€

and €s=0) and interacting particlesffs=o and {gs=0). The

216 (L+1)4 main part of the figure highlights the power-law decay for short

wy=FL Tres, (_) _ (25) times(log-log ploY: the solid line goes as 12 The inset highlights
Tdep L2(L+2) the exponential decay for long timés-log plot).

Hence the total nucleation rate is
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Let us observe that the dynamics given in £6). con-  tme t+1>0 is given by R(nt+ 1)=3[Pnns1(t)
serves the parity of the spatial distribution, because +anl,n(t)]v while for t=0 nucleations occur because both
adatoms are deposited on the same site, i.e., with probability

Pm.n(0)==Pnm(0)=Bij= = Bjic=Pm.n(t) = = Pn.m(1). Pn.n(0). Thespatial distribution of nucleation sites is there-

(28 fore
This means that if we start with an antisymmetric distri-
bution pp, n(0)= —pnm(0), theboundary conditiorp,, ,(t) P(n)=py n(0)+ 2 [Dn ne1 (D) +Pn (D] (32)

=0 is obeyed for all times: the two trianglesn-n) and
(m<n) are dynamically disconnected. The solution of Eq.

(6) is therefore still given by Eq(12), since the boundary 1 By
condition is fully taken into account by the value of the :pn,n(0)+§ % 1 K -
cosfﬂmentsBkj, which depends on the antisymmetric form 1- > cos(m +cos<m
Of Prmn(0). |
The coefficientsB,; are given by s nkw (n+1)jmr
AT At R
2 \? mkr\ [ njw [(n—1)kw njm
BkJ:(m) m% Pm r,(O)sm( 1)sm m) +Slr{ 1 SN (33
(29)

and the normalized distributioR™)(n) is presented in Fig.
In this expression we can decompose the summatigpas 1. The plot clearly shows that the spatial distribution is very
Sment Zm=>n, in the latter interchange the dumb indices similar to the mean-field resuIP(N)(n) although a small
n,m, and exploit the antisymmetry qd,, ,(0). We finally ~ discrepancy existésee the discussion in Sec. .A

obtain ' Nucleation timesThe distribution of nucleation times for
interacting particles is

B 2 2 (0)[ mkar njm .
K=\t Pm.n sin ——|sin| ———
L ALt Q(0)= 3, Pra0), (34
—(k@i)}E[BE—B,‘k], (30)
Sl -
Q(t+1>0)= 2 S[Pana()+Pa-1a(D]. (39
where n=1
Once summed, the two terms in E§5) are equal. Hence,
2 mkar njm
By= 1 E Prm.n(0)sin L+1)Sln i1 (31)

, , _ _Q(t+1>0)= X, Pyo1(t) (36)
The evaluation oB,; is here less straightforward than in n=1
the noninteracting case. In particular, some sums are not eas- L
ily performed explicitly. This makes difficult the presentation
of explicit results. Therefore in the following we will present 2
only the general results, leaving the coefficieBlg indi-
cated. (37
Nucleation sitesSince the regionsn<n and m>n are
equivalent, the probability of a nucleation event on sitat ~ where the coefficient€,; are

L

kar(n—1 i
ckj=n§1 sin 7TL(11 )} in ﬂinl (38)
_1 kr L(j—K)m|  [(j—k)m (j—k)m kar Lj+kK)a|  [(j+k)m (j+k)m
29T T T 2 ST 2 S S| TS T T 2t [P 2 Sy
(39
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Q(t) is shown in Fig. 2. For short times it decays slowly
(ast~?), while it goes down exponentially for large times. Ne=>
In Appendix A we show in detail that the behavior @Qft)
for short and long times can be derived explicitly in the case
of two adatoms with uniform initial distributions, for which
the coefficientsB,; are explicitly known: fort<2L?/7w? we The case with noninteracting adatoms is completely
find trivial for infinite barriers. At any timep, ,(t) = 1/L? so that
the spatial and temporal distributions of nucleation events
are constant. The total number of nucleation evafitg is
clearly infinite.

1+ tan2 (1+ 6y0)- (47

1. Noninteracting adatoms

Q(t)= (40)

8
L 77_5/2\/@ !
and fort>2L2%/ 72, 2. Interacting adatoms

In a way analogous to the case with zero barriers, we
(41) consider antisymmetric initial conditions and we obtain

5t 2

80
Q(t)_ 2L2e F{ 4

No qualitative change is expected if one atom is initially
distributed according tqnﬁ rather thanpﬁ: only prefactors
are expected to be different and this is confirmed by the

ko

L+1

Ki= (m)X;(n) = (kej)}

behavior shown in Fig. 2. =[By;—Bjil, (48)
Nucleation rate.The probabilityW of a nucleation event
is where
L
W= E+k§1 I - i (42) B;:W mzn Pmn(0) X (M)X;(N). (49)
Sl e Ny B e :

. . _ 2
In Appendix A we prove that for large, W goes to a con- More explicitly (pm,q(0)=1/L7),
stant. This constant is found numerically to be roughly equal

to 0.47. Hence, for largk, the nucleation rate is _ 1 . it
BTy 2 Xi() 2 Xi(m) (50)
IBLZ F2L4 k'Nj n=1 m=1
(1)=FLTFLWZO.O4T. (43)
o 5wl o
B. Strong and infinite barriers [regimes (ii) and (iii)] TL2NGN; Nk n=
With infinite ES barriersfgs=> anda=1. Step edges jor - mkar mkar
are perfectly reflecting barriers and boundary conditions are +cos( T” 2—) sm( +cos< 3 ”
Pin=Pon: PLn=PL+1ns Pm1=Pmo: PmL=Pm, Lyt The
normalized stationary distribution is S|mpty§ pn 1, (51)
because the distribution of the first adatom is still flat when
the second arrives. . . . Nucleation sitesThe distribution of nucleation sites is
The general solution for a two-dimensional walker is now ;i
given by
0-3 8,k s(k” - s(j HtX( X,(n),
Pmn(t) = _ ki 51| CO co K(M)Xi(n
T g 2L L P(N)=Ppy,a(0)+ 5 E [Prns 1)+ Pa-1n(D)] (52)
(44)
h
where 11 E By,
N r(kﬂ) (nkw N S{nkTr) 45 A 250 1 k jm
k(n)=ta 50 sin L co§ —— (45 1—5 S g <o
and the coefficients are X[ X (n)X;(n+1) + X (n=1)X;(n)] (53
. and it is plotted in Fig. Jin this caseP™N)(n) and P(n)
Byj= NiN; JXi(m)X;(n) (46) coincide, sincaV=1]. The distribution has a rounded peak
in the middle of the terrace and vanishes towards the bound-
with (&g is the Kronecker symbpl aries.
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0.016

0.01

0.005 |

FIG. 3. Normalized spatial distributioR™)(n) for d=1 and

{es=. Empty circles are for interacting patrticles, full circles for

noninteracting particlegmean-field approximationL =100 in the
main part,L =20 in the inset.

PHYSICAL REVIEW E 66, 031606 (2002

L
Q<t+1>0>=n§1 Pr-1n(t).

(56)
Using the expression fq?nm‘n(t),
1
Q)= (57
i 1 kar jm\ ¢
Q(t+1>0):kJ2=0 BkJCk] E CcOo T +Cco T ,
(58)
where the coefficient€,; are now
L
ckj=n§=)1 X (n—1)X;(n). (59

The form of Q(t) is shown in Fig. 2. The decay is the same
as for zero barriers: for short times it decays a¥2 and for
large times exponentially. Physically intuitive interpretations

The above expression fé(n) is exact, but it is not easy uf these behaviors are discussed in Sec. V B.
to use in applications. A simpler, approximate, expression is Nycleation rate.SinceW=1, the nucleation rate in re-

therefore highly desirable. In Sec. V A we show tR{h) is

well fitted by a hyperbolic cosine. Up to the normalization

factor,

. (54

B ( 2n
P(n)=cosh m)—cosh m—l

In Fig. 4 we compare exact and approximate distributions:
the agreement is fair already for relatively small sizes and

very good for large sizes.

Nucleation timesAs in the case with no barriers, we have

L
Q<0>=n21 Pnn(0), (55)

0.01 |
—_—
c
‘Av
4
2 0.005 |
]
10 15
0 N n
0 50 100

n

gime (i) is

Tres _ F2L3€ES

o(L)=FL Taes ) (60)
while in regime(iii) it is simply
o(L)=FL= (61)
Tdep

C. Intermediate barriers

For intermediate values of the barriers, i.e., values of
between 0 and 1, an explicit analytic solution of the problem
is not possible, even for noninteracting adatoms. This is a
direct consequence of the lack of an explicit solution for
intermediate barriers even in the case of a single particle
(Ref. [1]). Nevertheless the problem can easily be solved
numerically for anyfgg, through direct calculation of the
dynamical evolution ofpp, ,(t), which determinesk(n,t)
and all the quantities of interest.

The systematic error in the results, due to the integration
of Eqg. (6) up to a finite time, is fully negligible for realistic
values ofL: the probabilityQ(t) that nucleation occurs at
time t decays exponentially for largeand consequently the
systematic error can easily be made exceedingly small. All
numerical results presented in this paper can be considered
virtually exact.

As expected, the results for intermediate barriers
smoothly interpolate between the two limits of zero or infi-
nite barriers{gs/L being the only relevant parameter.

The spatial distribution of nucleation everi®™)(n) is

FIG. 4. Comparison of the normalized spatial distribution Présented in Fig. 5 fol. =50 and several values dfgg

PMN(n) for d=1 and{gs= (circles with the approximate for-
mula (54) (solid line). L=128 (main), L= 16 (inse}.

(€es=0,10,50,250). Even a small valdgs/L =1/5 changes
in a notable way the distributiorPN(n). The tem-

031606-7



PAOLO POLITI AND CLAUDIO CASTELLANO PHYSICAL REVIEW E66, 031606 (2002

0.04 . —— time t. Such a probability obeys the equation of motion
E 0.03 ..0. O.. pml,nl,mz,nz(t+1):%[pml+1,nl,m2,n2(t)+pml—l,nl,mz,nz(t)
>~ 0.02}| Y K
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FIG. 5. Normalized spatial distributioR™)(n) for d=1 and my.ng,my.ny 2 LFmy.n Fmy.ny T Fmyny Fmy nyds
L=50. Empty circles are for interacting particles, full circles for (63
noninteracting particleMFT). €gs=0 (top left), £gs=10 (top
right), €zs=50 (bottom lef), €zs= 250 (bottom righ}. where, as usuaph’mz 1/L2 is the uniform initial distribution

in two dimensions anqbrsn,n is the normalized stationary so-
poral distributionQ(t) smoothly interpolates between the lution of the discrete diffusion equation th=2.
two limit behaviors presented in Fig. 2.
A. Zero barriers [regime (i)]

IV. RESULTS IN TWO DIMENSIONS . .
1. Noninteracting adatoms

When the terrace is two dimensional the motion of tWo  Eor noninteracting adatoms the computation of the quan-
adatoms can be mapped into a four-dimensional problem fojities of interest proceeds along the same lines as in the one-
a single random walkepm, n,,m, n,(t) is the probability of  gimensjonal case. The general solution of the equation of
finding one atom on sitenf; ,n;) and the other inrfi,,n,) at  motion for the four-dimensional random walker is
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where the coefficient8, ; \ ;, are whereA{!"¥ are the coefficients of the expansion wif;”
(see Ref[1)]).
2 \4 - The probabilityR(m,n,t) of a (fictitious) nucleation event
Buyiskoi, = | T 1 - R Pm, .n,.m,.n,(0) at timet on site (n,n) is given bypm, o mn(t).
LT Nucleation sitesThe spatial distribution of nucleation
XS m1k17T ) nlj 17 X m2k2’77 Sites iS
ST S T )3 e
X sin Nalzm (65) S S
L+1 Pa(mm)=2, R(MN,O=2 prnmn(t) (67
Given the initial condition(63), the coefficientsBkljlkzj2 are
of the form and its normalized version is reported in Fig[\ée plot it

along the diagonal of the square terra&(n,n)].

S
A (66) Nucleation timesThe distribution of nucleation times is
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and it is plotted in Fig. 7. For large times, only the most L+1)\2 Bii11
slowly decaying modd&,=1, j;=1 contributes to the sum, Wy = 2 1 - -
ieldin i _ -
yieding 1=3 C°5<L+1 COE{L+1
| T tf m \?2 2 (L+1\°
QN|(t)"’eX tinco m =eX *E m . —? T (73)
(71)
. . and the total nucleation rate is
Nucleation rate.The total number of times the two ada-
toms meet before leaving the terrace is
£ 2Tres 2 (L+1)6 24
ONI= Tdep vy S (74)

L
WN|:m;:1 Pni(m,n)
’ Using the expressionr{..=2%/7%)(L%/D) derived in Ref.

L+1)\2 EL: Biiskais [1], the leading term irL is
2 ) e 1 ko jam\ |
S s T R e 64 F2L°
WNI= 8 T (75)
(72) &
For large values ok only the mode (1,1,1,1) dominates the
sum, so 10°
=
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0 0". 1'0 2‘0 3’0" FIG. 7. The temporal distribution fod=2 andL=40. In the
n main part 1Q(t) is plotted vst to highlight the logarithmic decay

for short times. From top to bottom, data are for noninteracting

FIG. 6. Normalized spatial distributioR™(n,n) along the di-  particles ¢zs=% and £gs=0) and interacting particlestfs= %
agonal ford=2, L =32 and{gs=0. Empty circles are for interact- and{gs=0). The solid line goes as lif() [i.e., Q(t) ~ 1/In(t/ty)].
ing particles, full circles for noninteracting particles. The inset shows the exponential decayQift) for long times.
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2. Interacting adatoms (diamond$.

At odds with what happens for the one-dimensional case, 2 5
the trick of using an initial condition antisymmetric with w=FL2 Tres _ FL>Ces
respect to particle interchange cannot be used in two dimen- Tdep 4D
sions for taking into account the interaction between par-
ticles. The physical reason is that in two dimensions twognd in regime(iii)
particles can swap their position without meeting. As a con-
sequence, the configuration space cannot be split into two
dynamically disconnected regions, because the condition w=FL2= )
Pmnmn(t)=0 holds on a two-dimensional plane that does Tdep
not divide the four-dimensional configuration space into
separate domains. Hence it is not possible to implement the For intermediate barriers, the results B\ (n,n) are
additional boundary conditiopy, , mn(t)=0 by choosing presented in Fig. 10. As iWl=1, the spatial distribution
the initial condition to be antisymmetric. We have not beeninterpolates between the two limits of zero and infinite bar-
able to overcome this problem analytically and therefore forriers. As already remarked for the one-dimensional case, a
the interacting case we resort to the numerical solution of Ecrelatively small ES barrierfzs/L = 1/5) remarkably affects
(62), which is easily performed, and gives virtually exactthe spatial distribution.
results(see Sec. lll ¢ The results foP™N)(n,n) and Q(t)

(77

(78)

are presented in Figs. 6 and 7, respectively. The spatial dis: 0.008 . .
tribution as given by MF theory agrees with exact results *%
even better than id=1; the short time decay f@(t) does & 0008 -
not follow a power law but rather a logarithmic of@(t) & o000 | . " KL
~1/In(t/ty)] ). . . . ’,
For what concerns the total nucleation rate we find nu- 0.002 | | A I ..
merically W=0.25/In(L/1.3) and this implies 0 Lest , Y O P , e
0.008
F2 LG
_—
w—0.0085 L3 (76) c 0.006 |
€ 0004}
L. ) ) N o geeetteens, [ s.::::::::.s 1
B. Strong and infinite barriers [regimes (ii) and (iii)] 0.002 |,.8° ‘s .°:s‘ ‘3:.
The results forQ(t) are presented in Fig. 7 and those for ol . . e, . . §
P(N)(m,n) in Figs. 8 and 9. The spatial distribution along the 0 5 }‘1’ 15 20 5 1r(|) 15 20

diagonal (Fig. 8 behaves much in the same way asdin
=1; a qualitatively similar behavior is found along different  F|G. 10. Normalized spatial distributioR™(n,n) along the
directions(Fig. 9). A deeper analysis is deferred to Sec. V A. diagonal ford=2 andL=20. Empty circles are for interacting
The total number of nucleation everéis clearly 1 and  particles, full circles for noninteracting particle&s=0 (top left),
this implies, in regimgii) £es=4 (top right, €zs= 20 (bottom lef), £ 5= 100 (bottom righj.

031606-10



PROCESS OF IRREVERSIBE. .. .1l... . PHYSICAL REVIEW E 66, 031606 (2002

V. DISCUSSION OF THE RESULTS P(n)=a,[a;— cosha,n—as)] (79

A. The spatial distribution ) . . . )
and imposing thaP(n) is symmetrical with respect the cen-

The form of the spatial distribution of nucleation sites haster of the terrace d5/a,=(L+1)/2) and thatP(0)=P(L
been presented in the previous two sections both in one and1)=0 [a;=cosh@g)]. The former condition is obvious,
two dimensions and for all values of the ES barrier. Someand the latter derives from the numerical evidence that
remarks are in order. P(1)/P[(L+1)/2] goes to zero for increasirlg Once both

As expected 1], we find that the mean-field assumption conditions have been imposed, we obtain
for the distribution of nucleation sités in general not exact
both in one and in two dimensions, for all valuestgt and
for all L. The origin of the discrepancy between the exact
form of P(n) and the MF counterpart is clear: the mean-field
approximation is equivalent to considering particles as nonThere is only one fit parametex;, because, is constrained
interacting, i.e., taking into account not only the first nucle-py the normalization condition foP(n). From a nonlinear
ation event between the particles, but also all subsequeglrve fitting for relatively smallL we can extrapolate that
encounters between them that would occur should they kee@3(|_) tends to a constant value of order 3.1l agrows. We

diffusing after meeting. ~ have, somewhat arbitrarily, sat(=) equal tom.
Although not exactly the same, the mean-field distribution

is howevera very good approximatioof the true spatial
distribution, for zero or weak ES barriers, particularlydn
=2. This result is somewhat striking, if we consider that the The results for the temporal distribution of nucleation
ratio Wy, /W is proportional toL in d=1 [Eq. (24)] and to  eventsQ(t) show in all cases a slow decay for short times
InL in d=2 [Eq. (73)]. Hence the relative weight of succes- (as a power law ird=1, logarithmic ind=2) followed by
sive nucleations diverges for growimg nevertheles®,(n) an exponential decrease for larger times. This behavior has
is very close toP(n), indicating that the distribution of all been obtained by solving exactly, analytically or numerically,
nucleation events following the first one is very similar to thethe evolution equation for the particles on the terrace. Its
distribution of the first. physical meaning is clarified further by rederiving these re-
Things are radically different for large ES barriers. In thisSults by means of more transparent but less rigorous argu-
case the discrepancy between MF and true distributions igents: the decay for short times is interpreted in terms of
remarkable. Also this result is somewhat counterintuitive first passage properties of random walks in an unbounded
Particles are distributed uniformly at the beginning and eactspace; the long time decay is the combined effect of the
of them would remain like that forever in the absence of theexponentially decreasing probability that both particles are
other: this is the reason why the spatial distributfyg for ~ Still on the terrace at timeand the probability that they have
noninteracting particles is uniform. The interaction betweer0t yet met.
particles breaks this uniformity. Consider, for example, the Let us first discuss the behavior at short times and con-
one-dimensional case. The nucleation probability on site sider the relative coordinate of the two particles as the coor-
close to the center of the terrace, is the sum of the statisticglinate of a fictitious particleC: nucleation occurs whe@
weight of all pairs of random walkéone for each particle  reaches the origin. The initial spatial distribution probability
with the constraint that they intersect for the first timaniif ~ for C [pc(r)] is a function ofp, andpg complicated by the
the siten is close to an edge, one of these walks is reflectedresence of boundaries. However, we are interested in the
by the boundary and the weight of walks intersecting for thed€havior for short times, i.e., times such that particles are not
first time inn is strongly reduced. affected by the presence of terrace edges. Therefore we can
An “entropic” mechanism is present for weak barriers asassume an initial spatial distributigns(r) uniform in a re-
well: in this case nucleation close to an edge is made difficulgion of linear sizeL around the origin gc=1/L%) and zero
by adsorbing boundaries, which reduce the probability tooutside. The irrelevance of boundaries in the short time re-
find an atom close to the steps. For weak barrke¢s) is  gime is confirmed by Figs. 2 and Q(t) has the same be-
peaked around the middle of the terrace also because tH@vior, independently of step-edge barriers.
initial distribution for one atom is not uniform, but parabolic. = We now defineF(r,t) as the first passage probabilityrin
Notice however that for infinite barriers the mean-field at timet starting from the origin at time zero. The probability
distribution, which includes the contribution of successivethat atomA, leaving fromr att=0 arrives for the first time
encounters, is completely flat. This indicates that, even if it ign the origin at timet is clearlyF(—r,t), so that
relatively unusual for particles to meet close to edges, once

2a3n
L+1

P(n)=a,| coshaz;— cosl{ —az||. (80

B. The temporal distribution

this happens they tend to meet there several times and this Q(t)=2 pe(DF(=T,1). (81)
restores uniformity in the distribution of all nucleation T '
events.

In Eq. (54) we have proposed an approximate expressiorLet us also defind>(r,t) as the probability that a particle is
for the distributionP(n) in the limit of infinite ES barriers. It in r at timet, being at the origin at time zero. A&=0 we
has been derived assuming a behavior as an hyperbolic chave P(r,0)= 6, o and F(r,0)=0. P(r,t) and F(r,t) are
sine connected by8]
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t
P(r,t)zZO F(r,7)P(Ot—1). (82)

We write Eq.(82) for spatial argument-r, multiply both

sides bypc(r),

t
pe(NP(=1.0= 2, pe(NF(~r,nP(OL-7) (83

and sum over,

t
Z Pc(r)P(‘r'”:Zo Q(NP(0t—7). (84

At short timesP(r,t) is negligible in the region where

pc(r) vanishes. Therefore we can tgkg out of the summa-
tion and use the normalization & —r,t), obtaining

1 t
[a= 2 QADPOL=17). (85)

In d=1, we pass to the continuuum in tinj&(0,t—7)
=1/(t— n)¥?],

1t Q(7)
E_ J'OdT—(t— 7-)1/2 (86)
and settingr=ts, we obtain
1 1 Qlts)
—ztl’ZJ ds————, 8
L o (1-s)¥2 ®7

which impliesQ(t) ~t 2.
In two dimensions we separate the termt in Eq. (85),

1 t-1
szo dT?ET:-FQ(t) 88)
1-1k Q(ts)
=f0 ds<— +Q(D) (89)
1-1t ds
~Qn |+ (90
~Q(D)[1+Int] (91)

and we obtaimQ(t) ~1/(1+Int).

In conclusion, at short time®(t) decays as a power law

d=1 and

[Q()~1AL] in
~1/In(t/ty)] in d=2.

logarithmically [Q(t)
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The time step for a single particle &= 1/(2d D), while for
two particles diffusing on the same terrace it ist
=1/(4dD), so that
S(t)~exp(—2asdDt). (92
The probability that two adatoms will meet at tiheecays
as
Q(t)~exp —4aqdDt). (93
In Sec. lll we determined that for noninteracting particles
ag= [ 7/ (L+1)]? for zero barriers andrg=0 for infinite
barriers, while for interacting particleso= 3 (/(L+1))?
for zero barriers andvg= 3(w/L)? for infinite barriers.

All these findings are simply rationalized by the following
argument. We defin&(t) as the probability that two ada-
toms confined on the terrace will meet for the first time at
time t: it is therefore equal t@(t) in the limit of infinite
barriers. For long times,

G(t)~exp —4acdDt). (94)

We claim that, for interacting adatom®@(t) is given by
the probability that each of the two adatoms is still on the
terrace times the probability that they meet for the first time
at timet,

Q~SA(1)G(t) = ag=astag. (95)
In the noninteracting case, cleary(t) does not play any
role. Then

QH~S(t) =

If we neglect the differences betweénandL +1 at the
denominators ofeg, the relations(95) and (96) are both
verified in the limits€gs=0 and{gs=°.

In d=2 the value ofa is not known analytically. How-
ever, relationg95) and (96) have been verified numerically.

(96)

aQ:as.

C. The nucleation rate

In this paper we have computed exactly the scaling of the
nucleation rate in all regimes, th=1 andd=2, for both the
noninteractingmean-field and the interacting case. The re-
sults confirm those of Refl], where the rigorous calcula-
tion of W was lacking. Mean-field theory overestimates the
nucleation rate by a factor that scales, in regiimezero or
weak barrier§ asL in d=1 and InL in d=2. In the limit of
strong barriergregime (ii)] the error scales aéggin d=1
and asfes/L in d=2. Notice that the latter is a large quan-
tity, since in this regimé g L. For infinite barriergregime
(iii)] the mean-field picture trivially breaks down. Hence
mean-field theory is generally strongly inaccurate, except in
two dimensions for weak barriers; however, even in this case

Let us consider now the behavior for long times. Thelogarithmic corrections rendesy,= not completely reliable.
probability that a single adatom remains on the terrace up to Our treatment allows the evaluation not only of expo-

time t is (see Ref[1]) S(t)~exp(—ad). In d=1 one has
as=3[7/(L+1)]? for zero barriers andrg=0 for infinite

nents, but also of prefactors. In particular, this is performed
analytically for zero or strong barriers ¢h=1 [Eqgs.(43) and

barriers. It is better to introduce a continuous time notation(60)] and for strong barriers inl=2 [Eq. (77)], while for
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TABLE I. Value of the nucleation rate, including the correct scales: the average lifetimes of all unstaplgusters (2]

prefactors. In regiméiii ) of infinite barriers,w=(FL®) ", <i*+1). Within the framework presented in this paper, this
problem is mapped into the random walk of a particle in a
d=1 d=2 suitable high-dimensional space with, in general, a spatially
Weak barriers F2L 4 F2L.6 varying diffusion coefficient. This inhomogeneity reflects the
0=04 —5 w:o.oosm fact that unstablg clusters diffuse and break up with rates
[regime(i)] different from the single adatom diffusion coefficient. In

_ o 3 o s many cases the full solution is therefore beyond reach, even
Strong barriers 1 FL%es e LF L tes numerically(unlessi* andL are very smaljl
[regime(ii)] 2 D 4 D However, in the simplest cases, our approach may still be
fruitful. Let us consider for examplg =2 andd=1: three
particles must meetin the same lattice sitein order to
nucleate a stable trimer. When two particles meet they form

d=2 and no barriers we have evaluated the prefactor nu

merically. For reference, we report in Table | the value of the? dimer that dissociates aftgr a typical timgs. If 7q;s IS
nucleation rate in the different cases. much smaller than all other time scales, two adatoms diffuse

Finally, we want to remark that id=1 for zero barriers as if they were noninteracting, thel 3valker diffuses isotro-

not only the asymptotic behavior for larde but also the Pically and we must just consider iisreversible passage
exact value ofw for any L can be determined analytically. 20N the diagonalx;=x,=x3). The same applies for ge-

. " . L
One just needs to perform the sumldf terms[Eq. (42)]. nericd andi* as Iong as dls_souauon times of unstable clus-
ters are small. This case is also of interest to test recent

scaling approachdd4.2] valid in the same limit ¢4is—0).
The second natural extension of the present work consists
In this paper and in the preceding offd we have pre- in considering nucleation on top of fractal islands instead of
sented a rather complete study of the problem of irreversiblgompact ones. The framework of our method remains un-
dimer nucleation on top of terraces during epitaxial growth.changed.
We have analyzed in detail the mean-field approach to this A further extension is to take into account the possibility
problem, identified its weaknesses and provided a physicalf reevaporation of deposited particles.
interpretation for them. Then we have solved the problem, by Note added in proofWe have recently13] extended the
analytical means ofwhen needednumerically. In this way ~model, discussed in this and in the preceding paper, to take
we have derived exact results for the spatial and temporanto account the nonuniformity of the Ehrlich-Schwoebel
distributions of nucleation events and for the total nucleatiorarrier at the step edge, because of the existence of kinks,
rate. and the nonuniformity of the incoming flux, because of steer-
We believe that these results provide a relevant contribuing effects.
tion to the investigation of crystal growth from both the ex-
perimental and the theoretical point of view. APPENDIX: ASYMPTOTIC BEHAVIORS
The dependence of the nucleation rateon the terrace OF THE TEMPORAL DISTRIBUTION IN  d=1

izeL and the ES len i rucial pi f information . . .
sizel and the ES lengtigsis a crucial piece of informatio In this Appendix we present some detailed results for the

for the interpretation of experimental results, for example, ne-dimensional with zero ES barriers and both ad
the evaluation of the Ehrlich-Schwoebel barrier. The mean?"€-dImensional case ero arners a oth ada-

field approximation has been widely used so far: as alread ms ha\_/ing a unifqrm ini_tial distributior_L Thi_s_is, O.f course,
pointed ouf9], this introduces a systematic underestimate o ot physically sensible, since the effective initial distribution

the strength of the ES barrier. The exact expressionsfor of the second adatom has.a paraboll_c formfigg=0. How- .
derived in this work, must replace the MF approximate for-EVer, contrary to the physically sensible case, the evaluation

2 P o .
mulas for a correct interpretation of experimental data.  ©f the coefficients3,; is not difficult and this allows an ex-
From the theoretical point of view, also the spatial distri- PliCit analytic evaluation of the behavior Qi(t), which will
models are used to describe the growth process in the sub- A Simple, although lengthy, evaluation of the coefficients

monolayer regimé10] or in the multilayer regimg11]. The  '€ads to
2 1k 1k

tial distributionP(n) of nucleation sites: as we have argued, BS=————|cof| = T -7 S,
) > . o KT (L+1)2L2 2L+1 2L+1)7%)
if additional step-edge barriers are not negligible, exact re-

Let us finally mention some possible extensions of theynere
present work. In this paper and in the preceding [djewe
races: it is therefore natural to wonder what occurs if these 81:Si”(§ L+1
hypotheses are relaxed.

bution plays an important role. Sometimes, “mesoscopic*differ from the realistic one only in the prefactors.
rule for dimer formation must be supplemented with the spa-
sults are completely different from mean-field predictions. (A1)
have discussed irreversible nucleation on top of compact ter- jm
The possibility of dimer dissociation introduces new time and

VI. CONCLUSIONS

S — cose%

(A2)

T 1 jm
SII"I?COSG Em
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1 1 km  (j+K)7|  |[L(j+K) 7 jt+k & 1 1 km (j—km
S=N itz M 2En | 2 ter T2z it 2
Lk 7 i—k A3
X sin S(L+1) %% 5 (71| (A3)
|
We now want to calculate the temporal distribution Therefore,
L
_ = 8 |1 .jw ]
t+1>0)= _qp(t Ad _ ;
Q( ) nZl Pn—1n(t) (Ad) Bkj_m j_SI 7_j_2—_k2}’ (A9)
- 1 K
= 1z _— and after some algebra
kél B"Jck'(z COS(L+1
: 8 K2+ |
i\l Byi=—23 { —1) —2—2} A10
+00{m , (A5) Kj Jk (=1)"+ i ( )
where the coefficient€,; are given in Eq(38). and
In the limit of largeL, the coefficient<C,; are nonvanish-
ing only for oddj — k (except fork=j, butB,,=0) and their K 2. 2
. (=1 ke+j
value is By;Cii= S+ : (A11)
- kivkj = 22 k2—12 (kz_Jz)z
C—k(lJrl—ZkJ (AB)
S VN N N S The dominant contribution t@(t) comes fromj=k—1 or
- j=k+1,
In the same limit
2L 2i7 B o 18] (-1 2kP+2k+1
Sl_j_’iT sin’ —-, (A7) kk=1Ck k1= 2L2[12k—1+ (F2k—1)2
(A12)
L2 A3
T r ik A8 Hence
|
L-1 k 2 2 L k 2
16 (-1) 2k“+2k+1 t ) -1) 2k —2k+1
Q(t)_ 2L2[ Zl [_Zk_l—’_ (_2k_1)2 ex[{_Z(L_) (2k +2k+1) 2 2k 1 (2k_ 1)2
X t o |° 2k?—2k+1 Al13
o glira) ¢ ) (ALY
We neglect the first term in both sums and approximate the sums according to the Euler-Maclaurin formula:
L
2 fi f dkf(k)+ 5 [f1+f,_] (A14)
Since in this casé <f;, we neglectf_,
16 ledk2k2+2k+1 t) 7 |2 o2t 2kt 1 5 5t 7 \? dek2k2—2k+1
QUU="7z) |, I z®A ~ 4l rrg) Bk tgexa =7l h) |7 ), ey
t 2
B 2_
Xex;{ ik (2ke—2k+1) (A15)
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The integrals can be evaluated by considering for the in- If t<(2L?%/ 7?) each integral goes tg'w/2 and the first
tegrand the limit for larges, and one obtains term prevails on the exponential; in the limit-(2L%/ 72)
the opposite is true. SoQ(t)=8/(L7>%\t/2) for t
j”‘m dxe—x2+j“‘m dxe?? <(2L%7?) and Q(t)=80/97°L 2exp(—5t/4[ /(L +1)]?)
mT2IL 2 T2IL for t>(2L% 7?).
By summingQ(t) overt one obtains/\.

L

ar 2

L+1

+ 80 ot Al6
R oy (A16)

The upper limit of the integrals can be shiftedsto

W fZLzlwzdt ‘ 2L2/712dt 8
8 * 2 * 2 0 At 0 Lo2\t/2
Q)= ——F= J dxe™* +J dxe™*
T L\/ﬁ w2/l 2mtR2IL
80 5t |2 _ %2
+9772L26XF{ AT } (A1) = —5=056.... (A18)
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